Desert farms could power flight with sunshine and seawater
But what if you could grow biofuels on land nobody wants, using just seawater and sunlight, and produce food at the same time?
That's just what a new project in Abu Dhabi is seeking to do. The Integrated Seawater Energy and Agriculture System, or ISEAS, will grow sustainable food and aviation fuel in the desert, using seawater and sunshine, in a way that is eminently transferable to similar arid regions around the world.
The project was announced in January 2015 and is now under construction.
So, how does the project solve the biggest environmental problems?
A triple dilemma
Energy, water and food problems frequently compound each other, each making the others more difficult to resolve.
Examples abound: think of wasteful irrigation coming up against water limits and threatening reductions in food production. But there are some projects that turn the issue around and bring water, energy and food issues into positive relations, each strengthening the others.
One example of this is the Sundrop Farms project in South Australia, on which I previously wrote on The Conversation, where abundant sunshine and seawater are used to produce electric power and fresh water to cultivate greenhouse crops like tomatoes.
The Sundrop Farms project is moving ahead, and has won substantial financial support from the global venture capital firm KKR in addition to its earlier support from the Clean Energy Finance Corporation, as well as a contract to supply fresh produce to supermarket chain Coles over the next ten years.
The Abu Dhabi project is even more ambitious and is called "seawater farming". It involves the use of salt-tolerant plants like mangroves and the oil-rich Salicornia as well as aquaculture of seafood such as shrimps and fish.
The project was developed through the Sustainable Bioenergy Research Consortium in Abu Dhabi. It involves as partners the airline Etihad Airways, the Masdar Institute of Science and Technology (from the UAE), as well as corporate giants Boeing, General Electric and UOP Honeywell. These corporations provide the funding and a potentially (vast) market.
The idea is to rapidly scale up various options for securing the biomass and complementing it with associated activities to generate a closed loop operation.
How does it work?
First, seawater is used in aquaculture ponds, where (2) fish and/or shrimp varieties can be grown (= food). Then (3) the wastewater from the aquaculture, which is rich in organic nutrients, is used to irrigate a salt-tolerant crop of Salicornia.
This crop is harvested (4) and the oil extracted from the seeds (= aviation biofuel). Water is then drained from the salt-tolerant crops (5) and fed into a mangrove wetland, where it is naturally purified and carbon can be sequestered (6).
Outside this sequence there is solar energy input to drive the crop production and energy production needed for pumping.
A chart of the process is shown here:
Source: The Conversation Africa
The Conversation Africa is an independent source of news and views from the academic and research community. Its aim is to promote better understanding of current affairs and complex issues, and allow for a better quality of public discourse and conversation.
Go to: https://theconversation.com/africa